Enrollment No: ____

Exam Seat No:_____

C.U.SHAH UNIVERSITY Summer Examination-2016

Subject Name: Problem Solving -I

Subject Code : 5SC02MTE2		Branch: M.Sc.(Mathematics)	
Semester : 2	Date : 17/05/2016	Time : 10:30 To 01:30	Marks : 70

Instructions:

- (1) Use of Programmable calculator and any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

SECTION – I

Q-1		Attempt the Following questions.	(07)
	a.	What is a rank of $n \times n$ identity matrix?	(01)
	b.	State Cayley-Hamilton Theorem.	(01)
	c.	Give relation between trace of matrix and Eigen value of matrix.	(01)
	d.	Find the sum of the series $\sum_{k=1}^{\infty} \frac{1}{k!}$.	(01)
	e.	Define Hermitian matrix.	(01)
	f.	Find the solution of $\frac{dy}{dx} = xy + 1$.	(02)
Q-2		Attempt all questions	(14)
	a)	Let V be the vector space of polynomials over R of degree less than or equal to n, for $p(x) = a_0 + a_1x + \dots + a_nx^n$ in V, defined a linear transformation T:V \rightarrow V by $T(p(x)) = a_0 - a_1x + \dots + (-1)^n a_nx^n$. Then show that T is 1-1,	(06)
		onto and invertible.	
	b)	Evaluate: $\int_{\Gamma} \frac{z^3 + 2z}{(z-a)^3} dz.$	(05)
		1) When $a \in \Gamma$.	
		2) When a lies out side Γ .	
	c)	Let $p(x) = x^4 - 4x^3 + 2x^2 + ax + b$. Suppose that for all root β of $p(x)$, $1/\beta$ is also a	(03)
	· · · ·	root of $p(x)$. Find the values of a and b.	· /

OR

Page 1 || 3

Q-2		Attempt all questions	(14)
	a)	Let J denote a 101×101 matrix with all the entries equal to 1 and let I denote the	(06)
		identity matrix of order 101. Then find the determinant of $J - I$.	
	b)	Let $u(x + iy) = x^3 - 3xy^2 + 2x$ for which find v such that $u + iv$ is	(05)
		holomorphic function on C .	
	c)	Let K be the positive integer then find the radius of convergence of the series	(03)
		$\nabla^{\infty} = \frac{(n!)^K}{k}$	
		$\sum n=0 \frac{1}{(Kn!)}$	
Q-3		Attempt all questions	(14)
	a)	Expansion of $f(x) = \frac{1}{(z-1)(z-2)}$ in the regions	(07)
		i) $ z < 1$	
		ii) $1 < z < 2$	
	b)	Evaluate: $\int_C \frac{z-3}{2+2+z} dz$	(07)
		(1) $C: z+1-i = 2$	
		(2) $C: z + 1 + i = 2$	
		OR	
Q-3		Attempt all Questions	(14)
	a)	Solve $\frac{dy}{dy} = \frac{x+2y-3}{2}$	(07)

$$dx \quad 2x+y-3$$

b) Evaluate:
$$\int_0^{2\pi} \frac{\cos 2\theta}{1 - 2 \cos \theta + a^2} d\theta.$$
 (07)

SECTION – II

Q-4		Attempt the Following questions.	
	a.	Let $(z) = \frac{5z-2}{z(z-1)}$. Find residue of f at each point.	(02)
	b.	Find the determinant of $n \times n$ permutation matrix = $\begin{bmatrix} 1 \\ 1 \\ \\ 1 \end{bmatrix}$.	(01)
	c.	Solve $(D^2 - 6D + 9)v = 0$.	(02)

c. Solve $(D^2 - 6D + 9)y = 0$. **d.** Given that the matrix $A = \begin{bmatrix} \alpha & 1 \\ 2 & 3 \end{bmatrix}$ has 1 as eigen value. compute its trace and (02) determinant.

Q-5 (14)

- (05)
- Attempt all questions
 a) Find the Residue of z cos ¹/_z at z = 0.
 b) Let A be a 3×3 upper triangular matrix whose diagonal entries are 1,2 and 3.express A⁻¹as in terms of I, A and A². (05)

Page 2 || 3

c) Let $p(z) = a_0 + a_1 z + \dots + a_n z^n$ and $q(z) = b_1 z + \dots + b_n z^n$ be complex (04) polynomials. If a_0 , b_1 are non zero complex numbers then the residue of $\frac{p(z)}{q(z)}$ at 0 is ______.

OR

Q-5	Attempt all Questions	(14)
	a) Solve $(D^2 - 5D + 6)y = e^x \cos 2x$.	(05)
	b) Find $\int_{ z+1 =2} \frac{z^2}{4-z^2} dz$.	(05)

c) Show that the polynomial of odd degree with real coefficient must have atleast (04) one real root.

Q-6 Attempt all questions (14)

a) Solve
$$:(2x^2 + 3y^2 - 7)xdx - (3x^2 + 2y^2 - 8)ydy = 0.$$
 (05)

- **b**) Evaluate power series of $f(z) = \frac{1+2z}{z^2+z^3}$ around 0 < |z| < 1. (05)
- c) Let $A = (a_{ij})$ be 2×2 lower triangular matrix with diagonal entries (04) $a_{11} = 1$, $a_{22} = 3$. If $A^{-1} = (b_{ij})$ then find the values of b_{11} and b_{22} .

OR

Q-6 Attempt all Questions (14) a) Evaluate $: \int_{C} \frac{\sin^2 z}{(z - \pi/6)^3} dz$, where C is circle |z| = 1. (05)

b) Solve:
$$\frac{dy}{dx} = \frac{x(2\log x+1)}{\sin y + y\cos y}$$
 (05)

c) Let $z = x + iy \in C$ and let f be defined by $f(z) = y - x - 3x^2i$. If C is a (04) straight line joining z = 0 to z = 1 + i. Compute $\int f(z)dz$.

Page 3 || 3

